如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.
(本小题满分7分)有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数中的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为的值.(1)的值为正数的概率是 ;(2)用画树状图或列表法求所得到的一次函数的图像经过第一、三、四象限的概率.
(1)如图,试用直尺与圆规在平面内确定一点O,使得点O到Rt△ABC的两边AC、BC的距离相等,并且点O到A、B两点的距离也相等.(不写作法,但需保留作图痕迹)(2)在(1)中,作OM⊥AC于M, ON⊥BC于N,连结A0、BO.求证:△OMA≌△ONB.
(1)解方程:; (2)解不等式组:
判断关于的一元二次方程的根的情况,结论是 .(填“有两个不相等的实数根”、“有两个相等的实数根”或“没有实数根”)
已知矩形纸片ABCD中,AB=24厘米,BC=10厘米. (1)按如下操作:先将矩形纸片上下对折,而后左右对折,再沿对角线对折,而后展开得到图中的折痕四边形EFGH(如图1),求菱形EFGH的面积. (2)如图2,将矩形纸片ABCD折叠,使点A与点C重合得折痕EF,则四边形AECF必为菱形,请加以证明. (3)请通过一定的操作,构造一个菱形EFGH(不同于第(1)题中的特殊图形),使菱形的四个顶点分别落在矩形ABCD的四条边上(E、F、G、H分别在边AB、BC、CD、DA上,且不与矩形ABCD的顶点重合). ①请简述操作的方法,并在图3中画出菱形EFGH. ②求菱形EFGH的面积的取值范围.