选修4-1:几何证明选讲(本小题满分10分)如图,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB为直径的圆,DC的延长线与AB的延长线交于点E. 若EB=6,EC=6,求BC的长.
如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB. (1)证明:BC1∥平面A1CD; (2)求二面角DA1CE的正弦值..
如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点. (1)求异面直线A1B与C1D所成角的余弦值; (2)求平面ADC1与平面ABA1所成二面角的正弦值.
如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE. (1)求异面直线EF与BD所成角的余弦值; (2)求二面角OOFE的正弦值.
如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心, (1)试证:A1、G、C三点共线; (2)试证:A1C⊥平面BC1D;
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点. 求证:(1)AM∥平面BDE; (2)AM⊥平面BDF.