设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于,求实数的取值范围.
如图所示的多面体中, 是菱形,是矩形,平面,,. (1)求证:平面平面; (2)若二面角为直二面角,求直线与平面所成的角的正弦值.
某校高一年级60名学生参加数学竞赛,成绩全部在40分至100分之间,现将成绩分成以下6段:,据此绘制了如图所示的频率分布直方图. (1)求成绩在区间的频率; (2)从成绩大于等于80分的学生中随机选3名学生,其中成绩在[90,100]内的学生人数为ξ,求ξ的分布列与均值.
已知,. ⑴ 求的最小正周期; ⑵设、,,,求的值.
从数列中抽出一些项,依原来的顺序组成的新数列叫数列的一个子列. (1)写出数列的一个是等比数列的子列; (2)设是无穷等比数列,首项,公比为.求证:当时,数列不存在 是无穷等差数列的子列.
如图, 已知椭圆E:的离心率为,过左焦点且斜率为的直线交 椭圆E于A,B两点,线段AB的中点为M,直线:交椭圆E于C,D两点. (1)求椭圆E的方程; (2)求证:点M在直线上; (3)是否存在实数,使得四边形AOBC为平行四边形?若存在求出的值,若不存在说明理 由.