(本小题满分12分)已知集合,,求
已知函数f(x)=x3﹣x2++,且存在x0∈(0,),使f(x0)=x0.(1)证明:f(x)是R上的单调增函数;(2)设x1=0,xn+1=f(xn);y1=,yn+1=f(yn),其中n=1,2,…,证明:xn<xn+1<x0<yn+1<yn;(3)证明:<.
平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成(n2+n+2)块.
已知Sn=1++++…+(n>1,n∈N*).求证:S2n>1+(n≥2,n∈N*).
是否存在常数a,b,c使得等式1•22+2•32+…+n(n+1)2=(an2+bn+c)对于一切正整数n都成立?并证明你的结论.
求证:++…+=++…+.