某中学校本课程共开设了共门选修课,每个学生必须且只能选修门选修课,现有该校的甲、乙、丙名学生.(Ⅰ)求这名学生选修课所有选法的总数;(Ⅱ)求恰有门选修课没有被这名学生选择的概率;(Ⅲ)求选修课被这名学生选择的人数的分布列和数学期望.
抛物线,直线过抛物线的焦点,交轴于点. (1)求证:; (2)过作抛物线的切线,切点为(异于原点), (i)是否恒成等差数列,请说明理由; (ii)重心的轨迹是什么图形,请说明理由.
四棱锥底面是菱形,,,分别是的中点. (1)求证:平面⊥平面; (2)是上的动点,与平面所成的最大角为,求二面角的正切值.
已知等比数列的各项均为正数,且成等差数列,成等比数列. (1)求数列的通项公式; (2)已知,记,,求证:
在中, (1)求的值; (2)求的面积.
设函数(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.