在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.(1)求的值及直线的直角坐标方程;(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系.
(本小题满分10分) 设函数的图象经过点. (1)求的解析式,并求函数的最小正周期. (2)若,若是面积为的锐角的内角,,求的长.
如图,点P是边长为1的菱形ABCD外一点,,E是CD的中点, (1)证明:平面平面PAB; (2)求二面角A—BE—P的大小。
如图,正方形ABCD-A1B1C1D1中,E、F、G分别是AB,AD,AA1的中点, (1)求证AC1⊥平面EFG, (2)求异面直线EF与CC1所成的角。
已知正方体,是底对角线的交点. 求证:(1)C1O∥面; (2)面.
已知中,面,,求证:面.