在直角坐标系xOy中,直线l的参数方程为(t为参数,0 ≤ α < π).以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρcos2θ = 4sinθ.(1)求直线l与曲线C的平面直角坐标方程;(2)设直线l与曲线C交于不同的两点A、B,若,求α的值.
已知函数的定义域为。(1)求证:直线(其中)不是函数图像的切线;(2)判断在上单调性,并证明;(3)已知常数满足,求关于的不等式的解集
已知函数,常数.(1)当时,解不等式;(2)讨论函数的奇偶性,并说明理由.(3)(理做文不做)若在是增函数,求实数的范围
已知函数f(x)=ax3+x2-x (a∈R且a≠0)(1)若函数f(x)在(2,+∞)上存在单调递增区间,求a的取值范围.(2)证明:当a>0时,函数在f(x)在区间()上不存在零点
设是函数的两个极值点,且(Ⅰ)求的取值范围;(Ⅱ)求证:.
已知函数f(x)=(1)若h(x)=f(x)-g(x)存在单调增区间,求a的取值范围;(2)是否存在实数a>0,使得方程在区间内有且只有两个不相等的实数根?若存在,求出a的取值范围?若不存在,请说明理由。