已知函数,常数.(1)当时,解不等式;(2)讨论函数的奇偶性,并说明理由.(3)(理做文不做)若在是增函数,求实数的范围
已知是定义在上的奇函数. (1)若在上单调递减,且,求实数的取值范围; (2)当时,,求在上的解析式.
已知函数(). (1)当时,求函数的最大值和最小值; (2)求实数的取值范围,使在区间上是单调函数.
某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?
设函数,用单调性定义证明在上是减函数.
已知集合,. (1)求 ,; (2)求.