已知集合},函数的定义域为集合.(Ⅰ)求和; (Ⅱ)若,求实数的取值范围.
(本小题满分12分)已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。(1)求椭圆C的方程;(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。
(本小题满分12分)甲、乙等五名环保志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点. (1) 求证:CE∥平面PAB; (2) 求PA与平面ACE所成角的大小; (3) 求二面角E-AC-D的大小.
(本小题满分12分) 设函数f(x)=,其中向量 ,. (1)求f( )的值及f( x)的最大值。 (2)求函数f( x)的单调递增区间.
设曲线:上的点到点的距离的最小值为,若,,(1)求数列的通项公式;(2)求证:;(3)是否存在常数,使得对,都有不等式:成立?请说明理由.