如图,在四棱锥中,底面是矩形,平面,且,点是棱的中点,点在棱上移动.(Ⅰ)当点为的中点时,试判断直线与平面的关系,并说明理由;(Ⅱ)求证:.
设函数(提示 :) (1)若函数在定义域上是单调函数,求实数的取值范围; (2) 若,证明对任意的正整数n,不等式都成立.
如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。 (I)求线段 的值; (II)求直线BD1与平面BDE所成角的正弦值;
已知等差数列的前项和为,且,. (1)求数列的通项; (2)设,求数列的前项和.
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(答:“是”或“否”) (2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名? (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率
已知二次函数直线(其中,为常数);.若直线1、2与函数的图象以及,轴与函数的图象所围成的封闭图形如阴影所示. (1)求、、的值; (2)求阴影面积关于的函数的解析式; (3)若问是否存在实数,使得的图象与的图象有且只有两个不同的交点?若存在,求出的值;若不存在,说明理由.