数列是递增的等比数列,且.(1)求数列的通项公式;(2)若,求证数列是等差数列;(3)若,求数列的前项和.
(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.(Ⅰ)求此双曲线的渐近线的方程;(Ⅱ)若分别为上的点,且2|AB|=5|F1F2|,求线段的中点M的轨迹方程,并说明轨迹是什么曲线。
(本小题满分12分)已知等差数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求数列的前项和.
(本小题满分12分)已知命题p:方程有两个不相等的实根;q:不等式的解集为R;若p或q为真,p且q为假,求实数m的取值范围。
20. 集合A是由具备下列性质的函数组成的:(1)函数的定义域是;(2)函数的值域是;(3)函数在上是增函数.试分别探究下列两小题:(Ⅰ)判断函数,及是否属于集合A?并证明.(Ⅱ)对于(Ⅰ)中你认为属于集合A的函数,不等式是否对于任意的总成立?若不成立,为什么?若成立,请证明你的结论.
为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车。已知每日来回趟数是每次拖挂车厢节数的一次函数,如果该列火车每次拖节车厢,每日能来回趟;如果每次拖节车厢,则每日能来回趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客人。(1)求出关于的函数;(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?