(本小题满分12分)季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P与周次t之间的函数关系式;(2)若此服装每件进价Q与周次t之间的关系为,,,试问该服装第几周每件销售利润最大,最大值是多少?(注:每件销售利润=售价-进价)
已知函数(1)若求的值域;(2)若为函数的一个零点,求的值.
如图,在四棱锥中,底面为边长为4的正方形,平面,为中点, .(1)求证:.(2)求三棱锥的体积.
设数列、满足,,,. (1)证明:,();(2)设,求数列的通项公式;(3)设数列的前项和为,数列的前项和为,数列的前项和为,求证:.
已知函数(a为实常数).(1)若,求证:函数在(1,+.∞)上是增函数; (2)求函数在[1,e]上的最小值及相应的值;(3)若存在,使得成立,求实数a的取值范围.
某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为(0<<1,则出厂价相应提高的比例为0.7,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.(1)若年销售量增加的比例为0.4,为使本年度的年利润比上年度有所增加,则投入成本增加的比例应在什么范围内?(2)年销售量关于的函数为,则当为何值时,本年度的年利润最大?最大利润为多少?