(本小题满分12分)学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳。(1)试求的函数关系式;(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由。
已知函数. (Ⅰ)若函数为偶函数,求的值; (Ⅱ)若,求函数的单调递增区间; (Ⅲ)当时,若对任意的,不等式恒成立,求实数的取值范围.
已知函数. (Ⅰ)当,函数有且仅有一个零点,且时,求的值; (Ⅱ)若函数在区间上为单调函数,求的取值范围.
已知函数. (Ⅰ)求函数的定义域; (Ⅱ)判断函数的奇偶性; (Ⅲ)若,求的取值范围.
已知函数(其中),满足. (Ⅰ)求函数的最小正周期及的值; (Ⅱ)当时,求函数的最小值,并且求使函数取得最小值的的值.
已知数列满足,,,是数列的前项和. (1)若数列为等差数列. (ⅰ)求数列的通项; (ⅱ)若数列满足,数列满足,试比较数列前项和与前项和的大小; (2)若对任意,恒成立,求实数的取值范围.