如图,已知平面,,△是正三角形,,且是的中点.(1)求证:平面;(2)求证:平面平面;(3)求平面与平面所成锐二面角的大小.
在平面直角坐标系中,已知圆,圆.(Ⅰ)若过点的直线被圆截得的弦长为,求直线的方程;(Ⅱ)圆是以1为半径,圆心在圆:上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围 ;(Ⅲ)若动圆同时平分圆的周长、圆的周长,如图所示,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
如图,圆柱内有一个三棱柱,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径.(Ⅰ)证明:平面平面;(Ⅱ)设,在圆柱内随机选取一点,记该点取自于三棱柱内的概率为.(ⅰ)当点C在圆周上运动时,求的最大值;(ii)记平面与平面所成的角为,当取最大值时,求的值.
(本小题共12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
(Ⅰ)试估计厨余垃圾投放正确的概率;(Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.(注:,其中为数据的平均数)
号码为1、2、3、4、5、6的六个大小相同的球,放入编号为1、2、3、4、5、6的六个盒子中,每个盒子只能放一个球.(Ⅰ)若1号球只能放在1号盒子中,2号球只能放在2号的盒子中,则不同的放法有多少种?(Ⅱ)若3号球只能放在1号或2号盒子中,4号球不能放在4号盒子中,则不同的放法有多少种?(Ⅲ)若5、6号球只能放入号码是相邻数字的两个盒子中,则不同的放法有多少种?
某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: ,,…, 后得到如下频率分布直方图.(Ⅰ)求分数在内的频率;(Ⅱ)用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,将该样 本看成一个总体,从中任意选取2人, 求其中恰有1人的分数不低于90分的概率.