如图所示,在平面直角坐标系中,抛物线()经过A(-1,0)、B(3,0)两点,抛物线与y轴交点为C,其顶点为D,连接BD,点P是线段BD上一个动点(不与B,D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果P点的坐标为(,),△PBE的面积为,求与的函数关系式,写出自变量的取值范围.
如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0). (1)求抛物线的解析式; (2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.
如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E. (1)求证:BD=BE; (2)若ÐDBC=30°,CD=4,求四边形ABED的面积.
如图,已知是⊙的直径,弦,垂足为点,点是上一点,且. 试判断的形状,并说明你的理由.
某校决定对初三学生进行体育成绩测试,成绩记入总分,同学们将根据自己平时的运动成绩确定自己的参考项目,下面是小亮同学的两个项目立定跳远和一分钟跳绳在近期连续五次测试的得分情况(立定跳远得分统计表和一分钟跳绳得分折线图): 立定跳远得分统计表
(1)请根据以上信息,分别将这两个项目的平均数、极差、方差填入下表:
(2)根据以上信息,你认为在立定跳远和一分钟跳绳这两个项目中,小亮应选择哪个项目作为体育考试的参考项目?请简述理由.
解方程: