美国自1982~1987年已经减少了25 875 000英亩农田,农场平均面积增加33英亩,但却有200000多家农场关闭了,下面的图(一)、(二)分别刻画了农场平均面积增加情况和农场个数减少情况.根据这两幅图提供的信息回答:(1)1985年农场数是多少个?农场平均面积是多少英亩?全美国有农场多少英亩?(2)在1982年,全美国共有农场多少英亩?到1987年呢?(3)设计一张折线图,反映全美国1982~1987年间农场总面积变化情况.
已知在正方形的网格中,网线的交点称为格点,如图,点A、B、C都是格点.每个小正方形的边长为1个单位长度,若在网格中建立坐标系,则A的坐标为(-1,3),B的坐标为(1,3),C的坐标为(3,1). (1)利用正方形网格,作过A、B、C三点的圆,并写出圆心O的坐标; (2)在(1)中所作的⊙O外,在这8×8的网格中找到一个格点P,作△PAC,使得△PAC的面积与△ABC的面积相等,并写出点P的坐标.(写出一个即可)
如图,函数y1=k1x+b的图象与函数(x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1),C点的坐标为(0,3). (1)求函数y1的表达式和B点坐标; (2)观察图象,比较当x>0时,y1和y2的大小.
已知,,,,请从,,,这4个数中任意选取3个求积,有多少种不同的结果?
以原点O为圆心,1cm为半径的圆分别交、轴的正半轴于A、B两点,点P的坐标为(2,0),动点Q从点B处出发,沿圆周按顺时针方向匀速运动一周,设运动的时间为秒. (1)如图一,当时,直线PQ恰好与⊙O第一次相切,连接OQ.求此时点Q的运动速度(结果保留); (2)若点Q按照(1)中的速度继续运动. ①当为何值时,以O、P、Q为顶点的三角形是直角三角形; ②在①的条件下,如果直线PQ与⊙O相交,请求出直线PQ被⊙O所截的弦长.
已知:如图,点P是正方形ABCD内的一点,连结PA,PB,PC. (1)如图甲,将△PAB绕点B顺时针旋转90°到△的位置. ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△的过程中边PA所扫过区域 (图甲中阴影部分)的面积; ②若PA=3,PB=6,∠APB=135°,求PC的长. (2)如图乙,若PA2+PC2=2PB2,请说明点P必在对角线AC上.