某超市上月销售一种优质新米,平均售价为10元/千克,月销售量为1000千克。经市场调查,若将该种新米价格调低至元/千克,则本月销售量(千克)与(元/千克)之间满足,且当=7时,=2000;当=5时,=4000.(1)求与之间的函数关系式。(2)已知该种新米上月的进价为5元/千克,本月的进价为4元/千克,要使本月销售该种新米获利比上月增加20%,同时又要让顾客得到实惠,则该种新米的价格应定为多少元?
因式分解:(1)4a3b2﹣6a2b3+2a2b2= , (2)﹣x2+2xy﹣y2= .
阅读下列材料,并解答相应问题: 对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2的形式,但是对于二次三项式x2+2ax﹣3a2,就不能直接应用完全平方公式了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a这项,使整个式子的值不变,于是有: x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2 =(x+a)2﹣(2a)2 =(x+2a+a)(x+a﹣2a) =(x+3a)(x﹣a). (1)像上面这样把二次三项式分解因式的数学方法是. (2)这种方法的关键是. (3)用上述方法把m2﹣6m+8分解因式.
把下列各式分解因式 (1)(x2+y2)2﹣4x2y2;(2)3x3﹣12x2y+12xy2
请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家苏菲•热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念苏菲•热门给出这一解法,就把它叫做“热门定理”,请你依照苏菲•热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab.
阅读理解 我们知道:多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解.当一个多项式(如a2+6a+8)不能写成两数和(或差)的平方的形式时,我们通常采用下面的方法: a2+6a+8=(a+3)2﹣1=(a+2)(a+4). 请仿照上面的方法,将下列各式因式分解: (1)x2﹣6x﹣27;(2)a2+3a﹣28;(3)x2﹣(2n+1)x+n2+n.