(本小题满分12分)设正项等比数列的前项和为, 已知,.(1)求首项和公比的值; (2)若,求的值.
设命题,命题, 若 是 的必要不充分条件,求实数的取值范围。
有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为12,求这四个数。
(本小题满分14分)在平面直角坐标系中,已知圆的圆心为,过点且斜率为的直线与圆相交于不同的两点.(Ⅰ)求的取值范围;(Ⅱ)是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
(本小题满分14分)(1)在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.求出的方程及其离心率的大小;(2)已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3.求椭圆的方程
(本小题满分14分)已知圆(1)求圆心的坐标及半径的大小;(2)已知不过原点的直线与圆相切,且在轴、轴上的截距相等,求直线的方程.