在正方形网格中建立如图所示的平面直角坐标系,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题。(1)画出△ABC关于轴对称的△A1B1C1。(2)画出△ABC关于原点对称的△A2B2C2。(3)将△ABC绕点B逆时针旋转900,画出旋转后的A3BC3。(4)求△A1A2A3的面积。
解方程(8分)(1)2x2-x-1=0 (配方法) (2)2x2-3x+1="0" (3)(x-2)2+2= x (4)
(本题12分) 如图,直线与轴、轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从轴开始以每秒1个长度单位的速度向上平行移动(即EF∥轴),并且分别与轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒. (1)当t=1秒时,求梯形OPFE的面积; (2)t为何值时,梯形OPFE的面积最大,最大面积是多少? (3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.
(本题12分) 某商品的进价为每千克40元,销售单价与月销售量的关系如下表(每千克售价不能高于65元):
该商品以每千克50元为售价,在此基础上设每千克的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式,并直接写出自变量的取值范围;(2)每千克商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(本题10分)如图,在正△ABC中,点D是AC的中点,点E在BC上,且 = .求证:(1)△ABE∽△DCE;(2),求
(本题10分) 如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一垂直于水平面的旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.