(本题12分)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心, cm为半径的圆与△ABC的边相切(切点在边上),求t值(单位:秒).
解方程组时,一同学把c看错而得到,而正确的解是,求a、b、c的值。
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,( 已知 )∴∠ADC=∠EGC=90°,( )∴AD∥EG,( )∴∠1=∠2,( ) =∠3,( )又∵∠E=∠1,( )∴∠2=∠3 ( ) ∴AD平分∠BAC.( )
解不等式组:.同时写出不等式组的整数解。
因式分解:(1);(2)
计算或化简:(1);(2)