如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1) 直接写出点M及抛物线顶点P的坐标;(2) 求出这条抛物线的函数解析式;(3) 若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
有这样的一个定理:夹在两条平行线间的平行线段相等.下面经历探索与应用的过程.探索:已知:如图1,AD∥BC,AB∥CD.求证:AB=CD.应用此定理进行证明求解.应用一、已知:如图2,AD∥BC,AD<BC,AB=CD.求证:∠B=∠C;应用二、已知:如图3,AD∥BC,AC⊥BD,AC=4,BD=3.求:AD与BC两条线段的和.
如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与 OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处(如图1). (1)若折叠后点D恰为AB的中点(如图2),则θ= ; (2)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E处(如图3),求a的值.
如图,在△ABC中,AB=17,BC=16,BC边上的中线AD=15, (1)求AC; (2)若点P在边AC上移动,则BP的最小值是 .
如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得BD长为1.3米,求梯子顶端A下落了多少米?
如图,M是Rt△ABC斜边AB上的中点,D是边BC延长线上一点,∠B=2∠D,AB=16cm,求线段CD的长.