(本题6分)为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费. 9月份小明家里用水a吨(a>15吨).(1)请用代数式表示李老师9月份应交的水费; (2)当a=20时,求李老师9月份应交水费多少元?
李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长. (1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处; (2)如图2,圆锥的母线长为4cm,底面半径r=cm,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A; (3)如图3,是一个没有上盖的圆柱形食品盒,一只蚂蚁在盒外表面的A处,它想吃到盒内表面对侧中点B处的食物,已知盒高10cm,底面圆周长为32cm,A距下底面3cm..
近日某小区计划在中央花园内建造一个圆形的喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,OA为1.25m,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图所示.为使水流形状较为漂亮,设计成水流在到OA距离lm处达到距水面最大高度2.25m. (1)请求出其中一条抛物线的解析式; (2)如果不计其他因素,那么水池的半径至少要为多少m 才能使喷出水流不致落到池上?
如图,P是⊙O的直径AB延长线上的一点, PC切⊙O于点C,弦CD⊥AB,垂足为点E,若,. 求:(1)⊙O的半径; (2)CD的长; (3)图中阴影部分的面积.
已知:抛物线. (1)求证:不论a取何值时,抛物线与x轴都有两个不同的交点. (2)设这个二次函数的图象与轴相交于A(,0),B(,0),且、的平方和为3,求a的值.
已知二次函数的图像经过点(-1,6) (1)求这个二次函数的关系式; (2)求二次函数图像与x轴的交点的坐标; (3)画出图像的草图,观察图像,直接写出当y>0时,x的取值范围.