首页 / 初中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较易
  • 浏览 1731

已知抛物线抛物线y n=-(x-an2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线y1=-(x-a12+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.

(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(        );
依此类推第n条抛物线yn的顶点坐标为(           );
所有抛物线的顶点坐标满足的函数关系是                 
(3)探究下列结论:
若用An-1An表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出An-1An

登录免费查看答案和解析

已知抛物线抛物线yn(xan)2an(n为正整数,且0