(本小题满分15分)在四棱锥中, ,,点是线段上的一点,且,.(1)证明:面面; (2)求直线与平面所成角的正弦值.
已知椭圆C:的离心率与等轴双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。 (Ⅰ)求椭圆C的方程; (Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)
已知函数f(x)=x2-(a-1)x-b-1,当x∈[b, a]时,函数f(x)的图像关于y轴对称,数列的前n项和为Sn,且Sn=f(n). (Ⅰ)求数列的通项公式; (Ⅱ)设,Tn=b1+b2++bn,若Tn>2m,求m的取值范围。
如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。 (Ⅰ)求证:平面FGH⊥平面AEB; (Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
某园艺师用两种不同的方法培育了一批珍贵树苗,在树苗3个月大的时候,随机抽取甲、乙两种方法培育的树苗各10株,测量其高度,得到的茎叶图如图所示(单位:cm). (Ⅰ)依茎叶图判断用哪种方法培育的树苗的平均高度大? (Ⅱ)现从用两种方法培育的高度不低于80cm的树苗中随机抽取两株,求至少有一株是甲方法培育的概率。
在△ABC中,角A,B,C所对的边分别为a,b,c,且1+=. (Ⅰ)求角A; (Ⅱ)已知,求的值。