(本小题满分14分)已知抛物线的焦点为,准线与轴的交点为.点()在抛物线上,且的外接圆圆心到准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)若直线与抛物线交于另一点,证明:为定值;(Ⅲ)过点作圆的两条切线,与轴分别交于、两点,求面积取得最小值时对应的值.
已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围.
证明:,,不能为同一等差数列中的三项.
设a、b、c均为大于1的正数,且ab=10,求证:logac+logbc≥4lgc.
数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n=1,2,3,…),证明: (1)数列是等比数列; (2)Sn+1=4an.
设数列满足a1=0且-= 1. (1) 求的通项公式; (2) 设bn=,记Sn=,证明:Sn<1.