(本小题满分12分)如图,圆的方程为,是圆外一个定点,是线段的中点,是圆上任意一点,线段的垂直平分线和半径所在直线相交于点.(Ⅰ)当点在圆上运动时,求证:点的轨迹为双曲线,并求轨迹的方程;(Ⅱ)若是双曲线的左顶点,设过双曲线右焦点的直线与双曲线的右支交于两点,其中点位于第一象限内.若直线分别与直线交于两点,求证:为定值;
(本题分12分) 如图,斜率为1的直线过抛物线的焦点,与抛物线交于两点A、B, 将直线按向量平移得到直线,为上的动点,为抛物线弧上的动点. (Ⅰ) 若 ,求抛物线方程. (Ⅱ)求的最大值. (Ⅲ)求的最小值.
(本题分12分) 如图,在长方体中,,为中点. (Ⅰ)求证:; (Ⅱ)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由. (Ⅲ)若二面角的大小为,求的长.
(本题分12分) 从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同. (Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率; (Ⅱ)若抽取后不放回,设抽完红球所需的次数为,求的分布列及期望.
(本题分12分) 在中,角的对边分别为,, (Ⅰ)求的值;(Ⅱ)若,求的值.
(本小题满分15分)已知函数 (1)若函数在上为增函数,求实数的取值范围; (2)当时,求在上的最大值和最小值; (3)当时,求证对任意大于1的正整数,恒成立.