某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x∈)名员工从事第三产业,调整后他们平均每人每年创造利润为万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
已知函数 f ( x ) = e x - ln ( x + m ) .  (Ι)设 x = 0 是 f ( x ) 的极值点,求 m ,并讨论 f ( x ) 的单调性;
(Ⅱ)当 m ≤ 2 时,证明 f ( x ) > 0 .
平面直角坐标系 x O y 中,过椭圆 M : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 右焦点的直线 x + y - 3 = 0 交 M 于 A , B 两点, P 为 A B 的中点,且 O P 的斜率为.(Ι)求 M 的方程; (Ⅱ) C , D 为 M 上的两点,若四边形 A C B D 的对角线 C D ⊥ A B ,求四边形面积的最大值
经销商经销某种农产品,在一个销售季度内,每售出 1 t 该产品获利润 500 元,未售出的产品,每 1 t 亏损 300 元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示.经销商为下一个销售季度购进了 130 t 该农产品.以 x (单位: t , 100 ≤ x ≤ 150 )表示下一个销售季度内经销该农产品的数量, T 表示利润.
(Ⅰ)将 T 表示为 x 的函数 (Ⅱ)根据直方图估计利润 T 不少于 57000 元的概率; (Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若 x ∈ [ 100 , 110 ) ,则取 x = 105 ,且 x = 105 的概率等于需求量落入 [ 100 , 110 ) ,求 T 的数学期望.
如图,直棱柱 A B C - A 1 B 1 C 1 中, D , E 分别是 A B , B B 1 的中点, A A 1 = A C = C B = 2 2 A B .
(Ⅰ)证明: B C 1 / / 平面 A 1 C D ; (Ⅱ)求二面角 D - A 1 C - E 的正弦值.
△ A B C 在内角 A , B , C 的对边分别为 a , b , c ,已知 a = b cos C + c sin B . (Ⅰ)求 B ; (Ⅱ)若 b = 2 ,求 △ A B C 面积的最大值.