(本小题满分14分)已知Sn为数列{an}的前n项和,且有a1=1,Sn+1=an+1(n∈N*). (1)求数列{an}的通项an;(2)若,求数列的前n项和Tn;(3)设的前n项和为An,是否存在最小正整数m,使得不等式An<m对任意正整数n恒成立?若存在,求出m的值;若不存在,说明理由。
已知关于的方程有实数根. (1)求实数,的值; (2)若复数满足,求为何值时,有最小值并求出最小值.
已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.
设为坐标原点,已知向量,分别对应复数,且,,.若可以与任意实数比较大小,求,的值.
实数为何值时,复数. (1)为实数; (2)为虚数; (3)为纯虚数; (4)对应点在第二象限.
已知复数对应的点落在射线上,,求复数.