(本小题满分14分)已知Sn为数列{an}的前n项和,且有a1=1,Sn+1=an+1(n∈N*). (1)求数列{an}的通项an;(2)若,求数列的前n项和Tn;(3)设的前n项和为An,是否存在最小正整数m,使得不等式An<m对任意正整数n恒成立?若存在,求出m的值;若不存在,说明理由。
已知椭圆和圆,且圆C与x轴交于A1,A2两点(1)设椭圆C1的右焦点为F,点P的圆C上异于A1,A2的动点,过原点O作直线PF的垂线交椭圆的右准线交于点Q,试判断直线PQ与圆C的位置关系,并给出证明。 (2)设点在直线上,若存在点,使得(O为坐标原点),求的取值范围。
(本小题满分14分)已知函数(其中A>0,)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求的解析式;(Ⅱ)当,求的值域;
(本小题满分16分)已知集合M是满足下列性质的函数的全体:若存在非零常数k,对任意,等式恒成立。(Ⅰ)判断一次函数是否属于集合M;(Ⅱ)证明属于集合M,并找到一个常数k;(Ⅲ)已知函数与的图像有公共点,试证明
(本小题满分16分)已知函数(Ⅰ)若,求方程的解(Ⅱ)若关于x的方程在(0,2)上有两个解,求k的取值范围。
(本小题满分16分)已知数列的前n项和为Sn,点的直线上,数列满足,,且的前9项和为153.(Ⅰ)求数列的通项公式;(Ⅱ)设,记数列的前n项和为Tn,求使不等式 对一切都成立的最大正整数k的值.