已知椭圆和圆,且圆C与x轴交于A1,A2两点(1)设椭圆C1的右焦点为F,点P的圆C上异于A1,A2的动点,过原点O作直线PF的垂线交椭圆的右准线交于点Q,试判断直线PQ与圆C的位置关系,并给出证明。 (2)设点在直线上,若存在点,使得(O为坐标原点),求的取值范围。
已知函数. (Ⅰ)若,且对于任意恒成立,试确定实数的取值范围; (Ⅱ)设函数,求证:
数列{}的前n项和为,. (Ⅰ)设,证明:数列是等比数列; (Ⅱ)求数列的前项和; (Ⅲ)若,数列的前项和,证明:.
某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示. (I)估计这次测试数学成绩的平均分; (II)假设在[90,100]段的学生的数学成绩都不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任意抽取2个数,有放回地抽取了3次,记这3次抽取中,恰好是两个学生的数学成绩的次数为,求的分布列及数学期望.
设平面向量,,函数。 (Ⅰ)求函数的值域和函数的单调递增区间; (Ⅱ)当,且时,求的值.
已知函数(为自然对数的底数). (1)求函数在上的单调区间; (2)设函数,是否存在区间,使得当时函数的值域为,若存在求出,若不存在说明理由.