(本题6分)利用尺规作图,补全下图残缺的圆轮,圆心为点O,并保留作图痕迹.
(凉山州)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底和,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC,∵E、F是AB、CD的中点,∴EF∥AD∥BC,EF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点请你运用所学知识,结合上述材料,解答下列问题.如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.
(凉山州)如图,⊙O的半径为5,点P在⊙O外,PB交⊙O于A、B两点,PC交⊙O于D、C两点.(1)求证:PA•PB=PD•PC;(2)若PA=,AB=,PD=DC+2,求点O到PC的距离.
(凉山州)如图,已知抛物线的顶点C在x轴正半轴上,一次函数与抛物线交于A、B两点,与x、y轴交于D、E两点.(1)求m的值.(2)求A、B两点的坐标.(3)点P(a,b)()是抛物线上一点,当△PAB的面积是△ABC面积的2倍时,求a,b的值.
(资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.
(资阳)如图,直线与x轴、y轴分别相交于A、B两点,与双曲线()相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).(1)求双曲线的解析式;(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.