已知:a,b,c为△ABC的三边长,且a2+b2+c2=ab+ac+bc,试判断△ABC的形状,并证明你的结论.
某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如下表所示:
(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?
已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.
如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:①在图②中,BD与CE的数量关系是________________;②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)求出抛物线的顶点C的坐标;(3)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.
每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示. (1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形,请画出菱形,并直接写出点B1的坐标; (2)将菱形OABC绕原点O顺时针旋转90º,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长.