如图所示,正方形所在的平面与等腰所在的平面互相垂直,其中顶,,为线段的中点.(Ⅰ)若是线段上的中点,求证:// 平面;(Ⅱ)若是线段上的一个动点,设直线与平面所成角的大小为,求的最大值.
已知函数在上为增函数,其中,(1)求的取值集合;(2),若在上为单调函数,求m的取值范围.
如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角,的最大值为.(1)求该人沿南偏西60°的方向走到仰角最大时,走了几分钟;(2)求塔的高AB.
已知数列满足条件:,(1)判断数列是否为等比数列; (2)若,令, 证明:(1); (2)
已知向量(为常数且),函数在上的最大值为.(1)求实数的值;(2)把函数的图象向右平移个单位,可得函数的图象,求函数的解析式及其单调增区间.
设函数.(Ⅰ)若,解不等式;(Ⅱ)如果,求a的取值范围.