(本小题满分14分)水库的储水量随时间而变化,现用t表示时间,以月为单位,以年初为起点,根据历年数据,某水库的储水量(单位:亿立方米)关于t的近似函数关系式为: (1)该水库的储水量小于50的时期称为枯水期。以表示第i个月份(i=1,2,...,12),问:一年内哪几个月份是枯水期?(2)求一年内该水库的最大储水量(取计算)
已知直线y=ax+1与双曲线3x2-y2=1交于A、B两点, (1)若以AB线段为直径的圆过坐标原点,求实数a的值。 (2)是否存在这样的实数a,使A、B两点关于直线对称?说明理由。
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。 (Ⅰ)证明:面面; (Ⅱ)求与所成的角的余弦值; (Ⅲ)求面与面所成二面角的余弦值。
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为. (Ⅰ)求,,的值;(Ⅱ)求函数的单调递增区间. (Ⅲ)求函数在上的最大值和最小值
抛掷两颗骰子,求: (Ⅰ)点数之和出现7点的概率;(Ⅱ)出现两个4点的概率.
:对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围.