(本小题满分14分)水库的储水量随时间而变化,现用t表示时间,以月为单位,以年初为起点,根据历年数据,某水库的储水量(单位:亿立方米)关于t的近似函数关系式为: (1)该水库的储水量小于50的时期称为枯水期。以表示第i个月份(i=1,2,...,12),问:一年内哪几个月份是枯水期?(2)求一年内该水库的最大储水量(取计算)
已知函数.(Ⅰ)若曲线在点(0,1)处切线的斜率为-3,求函数的单调区间;(Ⅱ)若函数在区间[-2,]上单调递增,求的取值范围.
已知椭圆上的点到其两焦点距离之和为,且过点.(Ⅰ)求椭圆方程;(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,,若,求△的面积.
数列记(1)求b1、b2、b3、b4的值;(2)求数列的通项公式及数列的前n项和
在中,分别是角A,B,C的对边,且满足.(1)求角B的大小;(2)若最大边的边长为,且,求最小边长.
已知椭圆C的焦点分别为和,长轴长为6,设直线交椭圆C于A、B两点,求线段AB的中点坐标.