数列记(1)求b1、b2、b3、b4的值;(2)求数列的通项公式及数列的前n项和
设、分别是椭圆的左、右焦点. (Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.
设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q。(Ⅰ)若直线m与x轴正半轴的交点为T,且,求点T的坐标;(Ⅱ)求直线A1P与直线A2Q的交点M的轨迹E的方程;(Ⅲ)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(Ⅰ)中的点)的取值范围。
在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.(Ⅰ)求W的方程;(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W有两个不同的交点P和Q,求k的取值范围;(Ⅲ)已知点M(,0),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量与共线?如果存在,求出k的值;如果不存在,请说明理由.
在平面直角坐标系中,过定点作直线与抛物线()相交于两点.(I)若点是点关于坐标原点的对称点,求面积的最小值;(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.
已知双曲线的中心在原点,对称轴为坐标轴,其一条渐近线方程是,且双曲线过点.(1)求此双曲线的方程;(2)设直线过点,其方向向量为,令向量满足.双曲线的右支上是否存在唯一一点,使得. 若存在,求出对应的值和的坐标;若不存在,说明理由.