(本小题满分12分)已知函数,其中e是自然对数的底数.(Ⅰ)证明:是R上的奇函数;(Ⅱ)若关于x的不等式在上恒成立,求实数m的取值范围;(Ⅲ)已知正数a满足:存在,使得成立,试比较与的大小,并证明你的结论.
对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”. (Ⅰ)若,,,数列、是否为“类数列”?若是,指出它对应的实常数,若不是,请说明理由; (Ⅱ)证明:若数列是“类数列”,则数列也是“类数列”; (Ⅲ)若数列满足,,为常数.求数列前2012项的和.并判断是否为“类数列”,说明理由.
已知椭圆()过点(0,2),离心率. (Ⅰ)求椭圆的方程; (Ⅱ)设过定点(2,0)的直线与椭圆相交于两点,且为锐角(其中为坐标原点),求直线倾斜角的取值范围.
已知 (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)若在处有极值,求的单调递增区间; (Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值; 若不存在,说明理由.
如图,矩形与梯形所在的平面互相垂直,,∥,,,为的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面平面; (Ⅲ)若,求平面与平面所成锐二面角的余弦值.
甲、乙两名篮球运动员在四场比赛中的得分数据以茎叶图记录如下:
(Ⅰ)求乙球员得分的平均数和方差; (Ⅱ)分别从两人得分中随机选取一场的得分,求得分和Y的分布列和数学期望. (注:方差 其中为,,的平均数)