已知圆的圆心在轴的正半轴上,半径为,圆被直线截得的弦长为.(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得关于过点的直线对称?若存在,求出实数的值;若不存在,请说明理由.
设△ABC的三个内角A,B,C所对的边长分别为a,b,c.平面向量= (cosA,cosC),=(c,a),=(2b,0),且·(-)=0(1)求角A的大小;(2)当|x|≤A时,求函数f(x)=sinxcosx+sinxsin(x-)的值域.
设命题p:|2x-3|<1;命题q:lg2x-(2t+l)lgx+t(t+l)≤0,(1)若命题q所表示不等式的解集为A={x|l0≤x≤100},求实数t的值;(2)若p是q的必要不充分条件,求实数t的取值范围.
已知函数.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若,在上存在一点,使得成立,求的取值范围.
四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形. (Ⅰ)若F为AC的中点,当点M在棱AD上移动,是否总有BF丄CM,请说明理由. (Ⅱ)求三棱锥的高.
已知等比数列是递增数列,,数列满足,且()(Ⅰ)证明:数列是等差数列;(Ⅱ)若对任意,不等式总成立,求实数的最大值.