如图,在四棱锥中,底面是菱形,且.(1)求证:;(2)若平面与平面的交线为,求证:.
(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)当时,求函数的定义域;(Ⅱ)若关于的不等式的解集是,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线的参数方程为:(t为参数),曲线的极坐标方程为:.(Ⅰ)写出的直角坐标方程,并指出是什么曲线;(Ⅱ)设直线与曲线相交于、两点,求值.
(本小题满分10分)选修4—1:几何证明选讲如图所示,已知AB是圆的直径,AC是弦,,垂足为D,AC平分(Ⅰ)求证:直线CE是圆的切线;(Ⅱ)求证:
(本小题满分12分)已知函数(I)当时,求函数的图象在点A(0,)处的切线方程;(II)讨论函数的单调性;(Ⅲ)是否存在实数,使当时恒成立?若存在,求出实数;若不存在,请说明理由.
.(本小题满分12分)在平面直角坐标系中,点为动点,已知点,,直线与的斜率之积为.(I)求动点轨迹的方程;(II)过点的直线交曲线于两点,设点关于轴的对称点为(不重合),求证:直线过定点.