(本小题满分10分)选修4-5:不等式选讲对于任意的实数和,不等式恒成立,记实数的最大值是.(1)求的值;(2)解不等式.
计算: (1)已知全集为,集合,,求. (2)
(本小题满分12分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数, (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; (2)若函数在上是以4为上界的有界函数,求实数的取值范围.
(本小题满分12分)已知定义域为的函数满足:①时,;②③对任意的正实数,都有; (1)求证:; (2)求证:在定义域内为减函数; (3)求不等式的解集.
(本小题满分12分)对于函数, (1)求函数的定义域; (2)当为何值时,为奇函数; (3)写出(2)中函数的单调区间,并用定义给出证明.
(本小题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量, (1)将利润表示为月产量的函数; (2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).