(本小题满分12分)已知函数(为常数)的图像与轴交于点,曲线在点处的切线斜率为-1.(1)求的值及函数的极值; (2)证明:当时,。
已知函数,, (Ⅰ)当时,若在上单调递增,求的取值范围; (Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得是的最大值,是的最小值; (Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。
已知:函数的最大值为,最小正周期为. (Ⅰ)求:的解析式; (Ⅱ)若的三条边为,,,满足,边所对的角为.求:角的取值范围及函数的值域.
已知集合, (Ⅰ)当时,求; (Ⅱ)求使的实数的取值范围。
已知函数的图象过坐标原点O,且在点处的切线的斜率是5. (1)求实数的值; (2)求在区间上的最大值;
如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,. (1)求证:平面平面; (2)求三棱锥D-PAC的体积; (3)求直线PC与平面ABCD所成角的正弦值.