(本小题满分10分)【选修4—1:几何证明选讲】在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为 (为参数),直线与曲线分别交于两点。(1)写出曲线和直线的普通方程;(2)若成等比数列,求的值.
一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球.(1)从袋中随机取两个球,求取出的两个球颜色不同的概率;(2)从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率.
已知函数.(1)求的最小正周期及对称轴方程;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若,bc=6,求a的最小值.
已知函数.(1)当时,求函数在点(1,1)处的切线方程;(2)若在y轴的左侧,函数的图象恒在的导函数图象的上方,求k的取值范围;(3)当k≤-l时,求函数在[k,l]上的最小值m。
已知椭圆(a>b>0)经过点M(,1),离心率为.(1)求椭圆的标准方程;(2)已知点P(,0),若A,B为已知椭圆上两动点,且满足,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.
已知等差数列{an}的前n项和为Sn,S7=49,a4和a8的等差中项为2.(1)求an及Sn;(2)证明:当n≥2时,有.