箱子里有个黑球,个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第次取球之后停止的概率为
在直角坐标系内,直线的参数方程为为参数.以为极轴建立极坐标系,圆的极坐标方程为.判断直线和圆的位置关系.
设满足以下两个条件的有穷数列为阶“期待数列”:①;②.(1)若等比数列为 ()阶“期待数列”,求公比;(2)若一个等差数列既是 ()阶“期待数列”又是递增数列,求该数列的通项公式;(3)记阶“期待数列”的前项和为:(ⅰ)求证:;(ⅱ)若存在使,试问数列能否为阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
已知函数,,().(1)求函数的极值;(2)已知,函数, ,判断并证明的单调性;(3)设,试比较与,并加以证明.
椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是.(1)若是边长为的等边三角形,求圆的方程;(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.
某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得每年改造生态环境总费用的22%。(1)若,,请你分析能否采用函数模型y=作为生态环境改造投资方案;(2)若、取正整数,并用函数模型y=作为生态环境改造投资方案,请你求出、的取值.