椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是.(1)若是边长为的等边三角形,求圆的方程;(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.
已知函数.(Ⅰ)求的值域;(Ⅱ)设△的内角A、B、C所对的边分别为a、b、c,已知为锐角,,,,求的值.
设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.
设函数f(x)=x2+|x-2|-1,x∈R.(1)判断函数f(x)的奇偶性;(2)求函数f(x)的最小值.
(满分10分)已知为数列的前项和,(),且.(1)证明数列是等差数列,并求其前项和;(2)设数列满足,求证:.