已知随机变量X的分布列为P(X=k)=,k=3,6,9.则D(X)等于( )
,是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且. (1)求数列,的通项公式; (2)记=,求数列的前项和.
已知都是正数,且成等比数列,求证:
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。 (Ⅰ)求C1的直角坐标方程; (Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
已知C点在⊙O直径BE的延长线上,CA切⊙O于A 点,CD是∠ACB的平分线且交AE于点F,交AB于点D (1)求∠ADF的度数;(2)若AB=AC,求的值.
已知函数的图像过坐标原点,且在点处的切线的斜率是. (1)求实数的值; (2)求在区间上的最大值; (3)对任意给定的正实数,曲线上是否存在两点,使得是以为 直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由.