已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.(1)求抛物线的方程;(2)设点是抛物线上的两点,的角平分线与轴垂直,求直线AB的斜率;(3)在(2)的条件下,若直线过点,求弦的长.
(本小题满分12分)已知椭圆的左右焦点分别为,点在椭圆上,且与轴垂直。(1)求椭圆的方程;(2)过作直线与椭圆交于另外一点,求面积的最大值。
(本小题满分12分)某工厂生产两种元件,其质量按测试指标划分为:为正品,为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:
由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均数相等,方差也相等.(1)求表格中与的值;(2)若从被检测的5件种元件中任取2件,求取出的2件都为正品的概率.
(本小题满分12分)在中,内角对边分别为,且(1)求角的大小;(2)若,求的值.
(满分10分)已知函数(1)求的最小正周期和单调递增区间;(2)求在区间上的取值范围。
设函数,.(Ⅰ)讨论函数的单调性;(Ⅱ)如果对于任意的,都有成立,试求实数a的取值范围.