(本小题满分12分)已知椭圆的左右焦点分别为,点在椭圆上,且与轴垂直。(1)求椭圆的方程;(2)过作直线与椭圆交于另外一点,求面积的最大值。
设函数,.(1)若,求的最大值及相应的集合;(2)若是的一个零点,且,求的值和的最小正周期.
已知函数 (1)解不等式; (2)若不等式的解集为空集,求实数的取值范围.
平面直角坐标系中,已知曲线,将曲线上所有点横坐标,纵坐标分别伸长为原来的倍和倍后,得到曲线(1)试写出曲线的参数方程;(2)在曲线上求点,使得点到直线的距离最大,并求距离最大值.
如图,△内接于⊙,,直线切⊙于点,弦,相交于点.(1)求证:△≌△;(2)若,求长.
已知函数(其中为常数).(Ⅰ)当时,求函数的单调区间;(Ⅱ) 当时,设函数的3个极值点为,且. 证明:.