如图,在矩形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从A向B以2 cm/s的速度移动;点Q沿DA边从D向A以1 cm/s的速度移动.如果P,Q同时出发,用t(s)表示移动时间(0≤t≤6),那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,你有什么发现?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABC相似?
如图,直线a∥b,∠1︰∠2︰∠3 =2︰3︰6 ,求∠1的度数.
已知直线与x轴、y轴分别交于B点、A点,直线与x轴、y轴分别交于D点、E点,两条直线交于点C,求⊿BCD的外接圆直径的长度。
某厂工人小宋某月工作部分信息如下。 信息一:工作时间:每天上午8:00—12:00,下午14:00—18:00,每月20天 信息二:生产甲、乙两种产品,并且按规定每月生产甲产品件数不少于60件。生产产品的件数与所用时间之间的关系如下表: 信息三:按件数计酬,每生产一件甲产品可得1.5元,每生产一件乙产品可得2.8元。 信息四:小宋工作时两种产品不能同时进行生产。 根据以上信息回答下列问题: 小宋每生产一件甲种产品,每生产一件乙种产品分别需要多少时间? 小宋该月最多能得多少元?此时生产的甲、乙两种产品分别是多少件?
如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
甲、乙、丙、丁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率; (2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率。