我们引入定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.
将下列各数填在相应的集合里: —3.8,—10,4.3,—∣—∣,4,0,—(—) 整数集合:{… };分数集合:{ … }; 正数集合:{… };有理数集合:{… }。
某开发商进行商铺促销,广告上写着如下条款: 投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择: 方案一:投资者按商铺标价一次性付清商铺款,每年可以获得的租金为商铺标价的10%. 方案二:投资者按商铺标价的八五折一次性付清商铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用. (1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益更高?为什么? (2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?
已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A、点B的距离相等,求点P对应的数; (2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由; (3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?
将长为1,宽为a的长方形纸片如图左那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图右那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作). (1)第一次操作后,剩下的长方形的长和宽分别为多少?(用含a的代数式表示) (2)第二次操作后,剩下的长方形的面积是多少?(列出代数式,不需化简) (3)假如第二次操作后,剩下的长方形恰好是正方形,则a的值是多少?
如图所示的两个长方形用不同形式拼成图1和图2两个图形. (1)若图1中的阴影部分面积为a2-b2;则图2中的阴影部分面积为______________.(用含字母a、b的代数式表示) (2)由(1)你可以得到等式______________________________________; (3)根据你所得到的等式解决下面的问题: ①计算:67.752-32.252 ②解方程: