解方程:(1);(2).
为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为 x (分 ) ,且 50 ⩽ x < 100 ,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩 x (分 )
频数(人数)
频率
一
50 ⩽ x < 60
2
0.04
二
60 ⩽ x < 70
10
0.2
三
70 ⩽ x < 80
14
b
四
80 ⩽ x < 90
a
0.32
五
90 ⩽ x < 100
8
0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中 a = , b = ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.
(1)求这两年该县投入教育经费的年平均增长率;
(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.
如图,抛物线经过 A ( − 1 , 0 ) , B ( 5 , 0 ) , C ( 0 , − 5 2 ) 三点.
(Ⅰ)求抛物线的解析式;
(Ⅱ)在抛物线的对称轴上有一点 P ,使 PA + PC 的值最小,求点 P 的坐标.
(Ⅲ)点 M 为 x 轴上一动点,在抛物线上是否存在一点 N ,使以 A , C , M , N 四点构成的四边形为平行四边形?若存在,求点 N 的坐标;若不存在,请说明理由.
(2) ∵ tan ∠ ACB = AB BC = 2 2 , BC = 2 ,
∴ AB = BC · tan ∠ ACB = 2 ,
∴ AC = 6 ;
又 ∵ ∠ ACB = ∠ DCE ,
∴ tan ∠ DCE = tan ∠ ACB = 2 2 ,
∴ DE = DC · tan ∠ DCE = 1 ;
方法一:在 Rt Δ CDE 中, CE = C D 2 + D E 2 = 3 ,
连接 OE ,设 ⊙ O 的半径为 r ,则在 Rt Δ COE 中, C O 2 = O E 2 + C E 2 ,即 ( 6 − r ) 2 = r 2 + 3
解得: r = 6 4
方法二: AE = AD − DE = 1 ,过点 O 作 OM ⊥ AE 于点 M ,则 AM = 1 2 AE = 1 2
在 Rt Δ AMO 中, OA = AM cos ∠ EAO = 1 2 ÷ 2 6 = 6 4
本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.
某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为 A 、 B 、 C 、 D 、 E ) .