(本小题满分10分) 如图所示,A、B两城市相距100km.现计划在这两座城市间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内.请问:计划修筑的这条高速公路会不会穿越保护区? 为什么?
计算:
如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).(1)点A的坐标是:_________,点C的坐标是:__________;(2)设△OMN的面积为S,求S与t的函数关系式;(3)探求(2)中得到的函数S有没有最大值?若有,求出最大值;若没有,说明理由.
如图,为直径,且弦于,过点的切线与的延长线交于点.(1)若是的中点,连接并延长交于.求证:;(2)若,求的半径.
我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株? (3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.
如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥BD交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.