如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)△ABC的面积为 (2)画出格点△ABC(顶点均在格点上)关于x轴对称的△(3)指出△的顶点坐标.( , ), ( , ), ( , ) (4)在y轴上画出点Q,使最小。
标有-3,-2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.求一次函数y=kx+b的图象不经过第三象限的概率.(用树状图或列表法写出分析过程)
为了倡导“节约用水,从我做起”,宜兴市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图. (1)请将条形统计图补充完整; (2)求这100个样本数据的平均数,众数和中位数; (3)根据样本数据,估计宜兴市直机关500户家庭中月平均用水量不超过12吨的约有多少户?
解方程(本题共4小题,每小题3分,共12分) (1)x2-2x-99=0 (2)3x2-6x+1=0 (3)x(x+2)=5x+10 (4)(x-2)2=(2x+3)2
如图,AB是⊙O的直径,点D在AB的延长线上,过点D作DC切⊙O于点C,若∠A=35°,则∠D=°.
如果一个点能与另外两个点能构成直角三角形,则称这个点为另外两个点的勾股点.例如:矩形ABCD中,点C与A,B两点可构成直角三角形ABC,则称点C为A,B两点的勾股点.同样,点D也是A,B两点的勾股点. (1)如图1,矩形ABCD中,AB=2,BC=1,请在边CD上作出A,B两点的勾股点(点C和点D除外)(要求:尺规作图,保留作图痕迹,不要求写作法). (2)矩形ABCD中,AB=3,BC=1,直接写出边CD上A,B两点的勾股点的个数. (3)如图2,矩形ABCD中,AB=12cm,BC=4cm,DM=8cm,AN=5cm.动点P从D点出发沿着DC方向以1 cm/s的速度向右移动,过点P的直线l平行于BC,当点P运动到点M时停止运动.设运动时间为t(s),点H为M,N两点的勾股点,且点H在直线l上. ①当t=4时,求PH的长. ②探究满足条件的点H的个数(直接写出点H的个数及相应t的取值范围,不必证明).